\n

I2C

Peripheral Memory Blocks

address_offset : 0x0 Bytes (0x0)
size : 0x30 byte (0x0)
mem_usage : registers
protection : not protected

address_offset : 0x3C Bytes (0x0)
size : 0x8 byte (0x0)
mem_usage : registers
protection : not protected

Registers

I2C_CTL

I2C_CLKDIV

I2C_TOCTL

I2C_ADDR1

I2C_ADDR2

I2C_ADDR3

I2C_ADDRMSK0

I2C_ADDRMSK1

I2C_ADDRMSK2

I2C_ADDRMSK3

I2C_WKCTL

I2C_ADDR0

I2C_WKSTS

I2C_DAT

I2C_STATUS


I2C_CTL

I2C Control Register
address_offset : 0x0 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_CTL I2C_CTL read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AA SI STO STA I2CEN INTEN

AA : Assert Acknowledge Control\n
bits : 2 - 2 (1 bit)
access : read-write

SI : I2C Interrupt Flag\nWhen a new I2C state is present in the I2C_STATUS register, the SI flag is set by hardware, and if bit INTEN (I2C_CTL [7]) is set, the I2C interrupt is requested. SI must be cleared by software. Clear SI by writing 1 to this bit.
bits : 3 - 3 (1 bit)
access : read-write

STO : I2C STOP Control In Master mode, setting STO to transmit a STOP condition to bus then I2C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In a slave mode, setting STO resets I2C hardware to the defined not addressed slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
bits : 4 - 4 (1 bit)
access : read-write

STA : I2C START Control\nSetting STA to logic 1 to enter Master mode, the I2C hardware sends a START or repeat START condition to bus when the bus is free.
bits : 5 - 5 (1 bit)
access : read-write

I2CEN : I2C Controller Enable Bit\n
bits : 6 - 6 (1 bit)
access : read-write

Enumeration:

#0 : 0

Disabled

#1 : 1

Enabled

End of enumeration elements list.

INTEN : I2C Interrupt Enable Bit\n
bits : 7 - 7 (1 bit)
access : read-write

Enumeration:

#0 : 0

I2C interrupt Disabled

#1 : 1

I2C interrupt Enabled

End of enumeration elements list.


I2C_CLKDIV

I2C Clock Divided Register
address_offset : 0x10 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_CLKDIV I2C_CLKDIV read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DIVIDER

DIVIDER : I2C Clock Divided Bits\nNote: The minimum value of DIVIDER is 4.
bits : 0 - 7 (8 bit)
access : read-write


I2C_TOCTL

I2C Time-out Control Register
address_offset : 0x14 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_TOCTL I2C_TOCTL read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOIF TOCDIV4 TOCEN

TOIF : Time-Out Flag\nThis bit is set by H/W when I2C time-out happened and it can interrupt CPU if I2C interrupt enable bit (INTEN (I2C_CTL[7])) is set to 1.\nNote: Write 1 to clear this bit.
bits : 0 - 0 (1 bit)
access : read-write

TOCDIV4 : Time-Out Counter Input Clock Divided By 4\nWhen Enabled, The time-out period is extend 4 times.
bits : 1 - 1 (1 bit)
access : read-write

Enumeration:

#0 : 0

Disabled

#1 : 1

Enabled

End of enumeration elements list.

TOCEN : Time-Out Counter Enable Bit\nWhen Enabled, the 14-bit time-out counter will start counting when SI (I2C_CTL[3]) is clear. Setting flag SI to high will reset counter and re-start up counting after SI is cleared.
bits : 2 - 2 (1 bit)
access : read-write

Enumeration:

#0 : 0

Disabled

#1 : 1

Enabled

End of enumeration elements list.


I2C_ADDR1

I2C Slave Address Register1
address_offset : 0x18 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDR1 I2C_ADDR1 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_ADDR2

I2C Slave Address Register2
address_offset : 0x1C Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDR2 I2C_ADDR2 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_ADDR3

I2C Slave Address Register3
address_offset : 0x20 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDR3 I2C_ADDR3 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_ADDRMSK0

I2C Slave Address Mask Register0
address_offset : 0x24 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDRMSK0 I2C_ADDRMSK0 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADDRMSK

ADDRMSK : I2C Address Mask Bits\nI2C bus controllers support multiple address recognition with four address mask register. When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exact the same as address register.
bits : 1 - 7 (7 bit)
access : read-write

Enumeration:

0 : 0

Mask Disabled (the received corresponding register bit should be exact the same as address register.)

1 : 1

Mask Enabled (the received corresponding address bit is don't care.)

End of enumeration elements list.


I2C_ADDRMSK1

I2C Slave Address Mask Register1
address_offset : 0x28 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDRMSK1 I2C_ADDRMSK1 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_ADDRMSK2

I2C Slave Address Mask Register2
address_offset : 0x2C Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDRMSK2 I2C_ADDRMSK2 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_ADDRMSK3

I2C Slave Address Mask Register3
address_offset : 0x30 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDRMSK3 I2C_ADDRMSK3 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I2C_WKCTL

I2C Wake-up Control Register
address_offset : 0x3C Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_WKCTL I2C_WKCTL read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WKEN

WKEN : I2C Wake-Up Enable Bit\n
bits : 0 - 0 (1 bit)
access : read-write

Enumeration:

#0 : 0

I2C wake-up function Disabled

#1 : 1

I2C wake-up function Enabled

End of enumeration elements list.


I2C_ADDR0

I2C Slave Address Register0
address_offset : 0x4 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_ADDR0 I2C_ADDR0 read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GC ADDR

GC : General Call Function\n
bits : 0 - 0 (1 bit)
access : read-write

Enumeration:

#0 : 0

General Call Function Disabled

#1 : 1

General Call Function Enabled

End of enumeration elements list.

ADDR : I2C Address Bits\nThe content of this register is irrelevant when I2C is in Master mode. In the slave mode, the seven most significant bits must be loaded with the chip's own address. The I2C hardware will react if either of the address is matched.
bits : 1 - 7 (7 bit)
access : read-write


I2C_WKSTS

I2C Wake-up Status Register
address_offset : 0x40 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_WKSTS I2C_WKSTS read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WKIF

WKIF : I2C Wake-Up Flag\nNote: Software can write 1 to clear this bit.
bits : 0 - 0 (1 bit)
access : read-write

Enumeration:

#0 : 0

No wake up occurred

#1 : 1

Wake up from Power-down mode

End of enumeration elements list.


I2C_DAT

I2C Data Register
address_offset : 0x8 Bytes (0x0)
access : read-write
reset_value : 0x0
reset_Mask : 0x0

I2C_DAT I2C_DAT read-write 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DAT

DAT : I2C Data Bits\nBit [7:0] is located with the 8-bit transferred data of I2C serial port.
bits : 0 - 7 (8 bit)
access : read-write


I2C_STATUS

I2C Status Register
address_offset : 0xC Bytes (0x0)
size : -1 bit
access : read-only
reset_value : 0x0
reset_Mask : 0x0

I2C_STATUS I2C_STATUS read-only 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Resets to Resets to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STATUS

STATUS : I2C Status Bits\nThe status register of I2C:\nThe three least significant bits are always 0. The five most significant bits contain the status code. Refer to section 6.19.5.4 for detail description.
bits : 0 - 7 (8 bit)
access : read-only



Is something missing? Is something wrong? can you help correct it ? Please contact us at info@chipselect.org !

This website is sponsored by EmbeetleEmbeetle, an IDE designed from scratch for embedded software developers.